A Network Model characterized by a Latent Attribute Structure with Competition
نویسندگان
چکیده
The quest for a model that is able to explain, describe, analyze and simulate real-world complex networks is of uttermost practical, as well as theoretical, interest. In this paper we introduce and study a network model that is based on a latent attribute structure: each node is characterized by a number of features and the probability of the existence of an edge between two nodes depends on the features they share. Features are chosen according to a process of Indian-Buffet type but with an additional random “fitness” parameter attached to each node, that determines its ability to transmit its own features to other nodes. As a consequence, a node’s connectivity does not depend on its age alone, so also “young” nodes are able to compete and succeed in acquiring links. One of the advantages of our model for the latent bipartite “node-attribute” network is that it depends on few parameters with a straightforward interpretation. We provide some theoretical, as well experimental, results regarding the power-law behavior of the model and the estimation of the parameters. By experimental data, we also show how the proposed model for the attribute structure naturally captures most local and global properties (e.g., degree distributions, connectivity and distance distributions) real networks exhibit. keyword: Complex network, social network, attribute matrix, Indian Buffet process
منابع مشابه
Dynamics of an eco-epidemic model with stage structure for predator
The predator-prey model with stage structure for predator is generalized in the context of ecoepidemiology, where the prey population is infected by a microparasite and the predator completely avoids consuming the infected prey. The intraspecific competition of infected prey is considered. All the equilibria are characterized and the existence of a Hopf bifurcation at the coexistence equilibriu...
متن کاملSimultaneous Monitoring of Multivariate-Attribute Process Mean and Variability Using Artificial Neural Networks
In some statistical process control applications, the quality of the product is characterized by thecombination of both correlated variable and attributes quality characteristics. In this paper, we propose anovel control scheme based on the combination of two multi-layer perceptron neural networks forsimultaneous monitoring of mean vector as well as the covariance matrix in multivariate-attribu...
متن کاملA Network data envelopment analysis model for supply chain performance evaluation: real case of Iranian pharmaceutical industry
Having a comprehensive evaluation model with reliable data is useful to improve performance of supply chain. In this paper, according to the nature of supply chain, a model is presented that able to evaluate the performance of the supply chain by a network data envelopment analysis model and by using the financial, intellectual capital (knowledge base), collaboration and responsiveness factors ...
متن کاملOnline Monitoring and Fault Diagnosis of Multivariate-attribute Process Mean Using Neural Networks and Discriminant Analysis Technique
In some statistical process control applications, the process data are not Normally distributed and characterized by the combination of both variable and attributes quality characteristics. Despite different methods which are proposed separately for monitoring multivariate and multi-attribute processes, only few methods are available in the literature for monitoring multivariate-attribute proce...
متن کاملMultiple attribute group decision making with linguistic variables and complete unknown weight information
Interval type-2 fuzzy sets, each of which is characterized by the footprint of uncertainty, are a very useful means to depict the linguistic information in the process of decision making. In this article, we investigate the group decision making problems in which all the linguistic information provided by the decision makers is expressed as interval type-2 fuzzy decision matrices where each of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 354 شماره
صفحات -
تاریخ انتشار 2016